Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.
نویسندگان
چکیده
Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment.
منابع مشابه
Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol
With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS₂/Fe₃O₄/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these p...
متن کاملRemoval of Toxic Cr(VI) Ions from Water Sample a Novel Magnetic Graphene Oxide Nanocomposite
This work describes the synthesis of a novel magnetic graphene oxide composite for removal of Cr(VI) ions. The synthesized nanosorbent were characterized with various techniques such as FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis and vibrating sample magnetometry (VSM). This material is illustrated to represent a viable sorbent for the removal of Cr(VI...
متن کاملEvaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution
The aim of this study was to evaluate the adsorption capacity of the novel coated activated carbon by chitosan for removal of Cr (VI) and Cd (II) ions from single and bi-solute dilute aqueous solutions. In addition, the adsorption abilities of activated carbon (AC), chitosan (CH) and chitosan / activated carbon composite (CHAC) have been compared. Adsorption studies were performed in a batch sy...
متن کاملRemoval of Chelated Copper by TiO2 Photocatalysis: Synergetic Mechanism Between Cu (II) and Organic Ligands
UV/TiO2 photocatalysis of chelated copper in aqueous solutions has been performed starting from Cu(II)-tartaric acid, Cu(II)-citric acid, Cu(II)-EDTA and Cu(II)-DTPA,in the presence of oxygen and at acidic pH. The photocatalytic reaction obeys first-order kinetic equation. The influence of Cu(II) on photocatalytic oxidation of organic ligands and how the various organics will affe...
متن کاملInvestigation of effective parameters on the performance of NF membrane in simultaneous removal of Cr (VI) and Cu from contaminated water
The present study investigates an NF process for removal of copper and hexavalent chromium, studying the effect of pH (5, 7, 9) as well as contaminants' concentration (50, 500, 5000 µg/L) at a constant pressure of 8 bar; with the recovery rate, regulated at 75±2%. To determine the main factors, affecting the system performance, and evaluate the interaction effects among the factors, the experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 317 شماره
صفحات -
تاریخ انتشار 2016